A NEW COMPOUND OF $\delta-MnO_2$ FAMILY; $\delta-MnO_2$ (II)

Naoichi YAMAMOTO and Shin-nosuke HIGASHI
Department of Chemistry, School of Liberal Arts and Sciences, Kyoto University,
Yoshida-Nihonmatsu, Sakyo, Kyoto 606

Black precipitate of so-called $\delta\text{-MnO}_2$ was found usually to be a mixture of two different kind of compounds ($\delta\text{-MnO}_2(I)$ and $\delta\text{-MnO}_2(II)$). Crystallographic conversion took place between these compounds in the presence of their mother liquid.

Black precipitate, which was obtained by oxidizing $Mn(OH)_2$ suspension in concentrated NaOH alkaline solution at room temperature, was called usually $\delta-MnO_2$. Formation condition, chemical and physical properties of the compound were reported by many authors. Recent study of R.Giovanoli et al claimed that the compound should be described as $Na_1Mn_{14}O_{27}$ $9H_2O$ instead of $\delta-MnO_2$ having a orthorombic unit cell (a=8.54, b=15.39 and c=14.26Å). But results of these reports were not consistent with each other. We have carried out extensive X-ray diffraction study and found that so-called $\delta-MnO_2$ was a mixture containing two compounds and some curious crystallographic conversion took place between these two compounds. Experimental results were as follows.

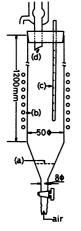


Fig. 1 Schematic drawing of reaction tube. The tube was constructed from pyrex (a) glass filter (b) heater (c) thermometer (d) cooling tube

The starting suspension of $\operatorname{Mn}(OH)_2$ was prepared by dissolving 50g of MnSO_4 5H₂O in 0.5 l distilled water and then adding 0.5 l of 5N-NaOH solution to it. Obtained suspension of $\operatorname{Mn}(OH)_2$ was poured in a reaction tube (Fig. l) and diluted with oxygen free water to 1.5 l. Suspension of $\operatorname{Mn}(OH)_2$ was oxidized with air (800/h) at room temperature. White precipitate of $\operatorname{Mn}(OH)_2$ was gradually oxidized to black δ -MnO₂. About an hour later oxidation was

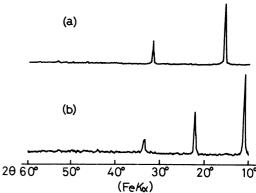


Fig. 2 X-ray diffraction patterns (a) δ -MnO₂(I) (b) δ -MnO₂(II)

completed. Small amount of precipitate was extracted from the suspension for X-ray measurement. Then extraction of sample was repeated at interval of desired time. During the procedure aeration was continued to agitate the suspension. In X-ray measurement care should be taken not to dry up samples from its mother liquid for avoiding chemical and or crystallographic conversion of samples. In most cases obtained X-ray diffraction pattern of a sample was made of two sets of peaks. One of them coincides with patten of

 $Na_{4}Mn_{14}O_{27}9H_{2}O$ and the other is entirely new one (hereafter we describe the former as $\delta-MnO_{2}(I)$ and the latter as $\delta-MnO_{2}(II)$, respectively). The X-ray diffraction patterns of $\delta-MnO_{2}(I)$ and

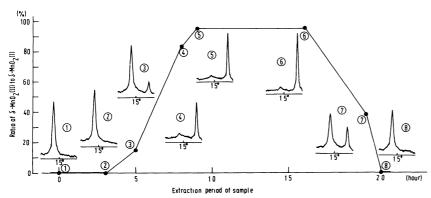


Fig. 3 Time dependent crystallographic conversion between δ -MnO $_2(I)$ and δ -MnO $_2(II)$ in their mother liquid at room temperature. Portion of X-ray diffraction patterns of the samples are also given in the figure (δ -MnO $_2(I)$ 20 =16.2 $^{\!0}$ and δ -MnO $_2(II)$ 20 =11.2 $^{\!0}$)

 δ -MnO₂(II) are given in Fig. 2. Moreover δ -MnO₂(I) and δ -MnO₂(II) showed time dependent crystallographic conversion between each other in their mother liquid. The observed characteristic example of time dependent conversion was shown in Fig. 3. In this figure ratio of $\delta-MnO_2(II)$ to $\delta-MnO_2(I)$ in a sample is represented with relative main peak intensities of X-ray diffraction pattern (2θ = 11.2° and $2\theta = 16.2^{\circ}$ using FeK α). Repetition of experiment showed conversion degree of δ -MnO $_2$ (I) to δ -MnO₂(II) or vice versa was usually not so complete as the case of Fig. 3. In most cases an

amount of $\delta\text{-MnO}_2(I)$ in a sample was between 20~80% and showed time dependent fluctuation within the range of the figures. Suspension of so-called $\delta\text{-MnO}_2$ was heated, time dependent fluctuation between two compounds was centering around more $\delta\text{-MnO}_2(I)$ rich portion (if suspension was heated in the presence of $\text{Mn}(OH)_2$ contamination of Mn_3O_4 was observed). Above 70°C only $\delta\text{-MnO}_2(I)$ was observed throughout experimental period (48h). Cooling of suspension below room temperature had little effect on conversion between two compounds. Although it takes about 3 hour of time in Fig.3 , cycle of conversion period of $\delta\text{-MnO}_2(I)$ to $\delta\text{-MnO}_2(II)$ was rather irregular in usual. We could determine neither chemical composition nor crystal structure of $\delta\text{-MnO}_2(II)$, for the compound being so unstable without its mother liquid that freeing from mother liquid by filtration inducing partial structure conversion to $\delta\text{-MnO}_2(I)$. Both fragility of $\delta\text{-MnO}_2(II)$ and two dimensional-like crystal structure of $\delta\text{-MnO}_2(I)$ strongly suggest mutual conversion of crystal structure in mother liquid was induced by egress and ingress of H_2O or OH^- molecule at skeleton structure of a crystal lattice. But the problem is left behind.

References

- 1) W. Feitknecht and W. Marti, Helv. Chim. Acta, 28, 129 (1945).
- 2) W. Buser, W. Graf and W. Feitknecht, Helv. Chim. Acta, 37, 2322 (1945).
- 3) L.H.P. Jones and A.A. Milne, Mineral. Mag., 31, 283 (1956).
- 4) O. Glemser, G. Gattow and H. Meisek, Z. Anorg. Allg. Chem., 309, 1 (1961).
- 5) G. Gattow and O. Glemser, Z. Anorg. Allg. Chem., 309, 18 (1961).
- 6) R. Giovanoli, Chimia, <u>23</u>, 470 (1961).
- 7) R. Giovanoli, E. Stahli and W. Feitknecht, Helv. Chim. Acta, 53, 209 (1970).
- 8) R. Giovanoli, E. Stahli and W. Feitknecht, Helv. Chim. Acta, 53, 453 (1970).

(Received July 17, 1978)